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This paper presents a numerical scheme, based on the finite element method, to solve strongly coupled

fluid flow and heat transfer problems. The surface radiation effect for gray, diffuse and isothermal surfaces is

considered. A procedure for obtaining the view factors between the radiating surfaces is discussed. The

overall solution strategy is verified by comparing the available results with those obtained using this

approach. An analysis of a thermosyphon is undertaken and the effect of considering the surface radiation is

clearly explained.

INTRODUCTION

There are many engineering applications in which a coupled analysis of fluid flow and heat transfer

is desired. Among a large list of such examples, a few important ones are design of heat exchangers, cooling

of electronic components, climate control and underhood analyses in automobiles, performance of industrial

furnaces, heat transfer analysis in confined cavities, and, cooling and heating of buildings, etc. The fluid flow

analysis generally requires solution of conservation equations of mass and momentum. Several numerical

approaches are available (refs. 1 to 4) under a variety of boundary conditions. In heat transfer studies usually

energy conservation involving all three modes (namely, conduction, convection and radiation) is expected.

However. until recently, conduction and convection heat transfer modes were accurately accounted for while

approximations were made for including the radiation analysis (ref. 5). The high nonlinearity involved in the

basic theory precluded from obtaining analytical solutions and a use of ordinary numerical methods for

practical problems. The availability of cheaper computer resources has caught the attention of researchers

wanting to include accurate radiation analyses in their studies. This is reflected in a collection of papers

included in (ref. 6) published recently.

The aim of this paper is to present a numerical methodology for analyzing fluid flow and heat transfer

problems (including all three modes). A brief account of numerical solution of Navier-Stokes and continuity

equations using the finite element method is presented. The assumptions involving the heat transfer via

radiation include non-participating fluids and gray, diffuse surfaces based on enclosure theory (ref. 8).

Solution of strongly coupled (heat transfer and fluid flow) phenomenon with natural convection is

demonstrated through a couple of examples. To benchmark the developed code. a comparison with the

already reported results is made. This is followed by a discussion of results in an analysis involving a study of

thermosyphon (ref. 9). a passive system used for cooling of electronic components.
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GOVERNINGEQUATIONS

In this section, the basic equations associated with the fluid flow and heat transfer are discussed.

Generally, it suffices to consider the conservation of mass, momentum, and energy in the given domain of

interest. In the presence of surface radiation, additional equation representing the conservation of radiative

energy must also be considered. The effect of radiative fluxes on the relevant surfaces must be reflected in the

overall energy balance. In summary, the following equations must be solved to conserve mass, momentum,

energy, and radiative energy:

conservation of mass:

0Uk (I)
- 0

0Xk

conservation of momentum:

conservation of energy:

0C --+Uk_k k = _j(k .)+Q

For explanation of the symbols employed, refer to the section titled Nomenclature. It should be noted that

Equations (1) through (3) are used for incompressible fluid flow with Boussinesq approximations invoked to

model the natural convection phenomenon.

conservation of surface radiative energy:

..... Fij t3T_s
j= I gJ _J j= I j= I j

In deriving Equation (4), it is assumed that the surfaces are gray, diffuse and isothermal (ref. 8). The view

factors, Fij, between surfaces i and j, appearing in Equation (4) must be computed when attempting the

solution of this equation. In the next section, a discussion on view factor calculations is undertaken.

(2)

(3)

(4)
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COMPUTATION OF VIEW FACTORS

In order to compute qr's (in Equation (4)), view factors Fij, between all radiating surfaces must be

available. In this section, the physical meaning ofviewfactor and its calculation will be discussed. For a

better understanding, i,j in the above equation can be replaced with 1 and 2. Thus, view factor. FI-2, between

two arbitrary surfaces (see Figure 1), '1' and '2' is defined as a fraction of diffuse radiant energy leaving

surface ' 1' that arrives at surface '2'. Mathematically,

j-A j"A . (5)l Cos 01 Cos0* dA1 dA2
FI-2 - AI 1 2 7r r_2

where A I and A2 are the areas of surfaces 1 and 2, respectively, r12 is the distance between the two elemental

areas dAI and dA2, 01 is the angle between the position dependent normal vector n-+and the line connecting

dA1 and dA2. Angle 02 is defined in a similar way. It must be noted that Cos 01 and Cos 02 must be positive

in order for the surface dA1 and dA2 to "see' each other. If either of the cosines has a negative value, the

corresponding view factor, FdAi-dA2 should be set to zero. Such cases, in which tile inactive side of the

radiating face acts as an obstructer, will be termed as 'self-obstruction' cases. Also, view factor FI-2 should

be set to zero, ifa third surface obstructs the view between surfaces 1 and 2.

In order to calculate view factors internally, the user must specify the radiation surfaces in terms of the

finite element faces ofa discretized domain. The user must also specify which of the two sides is a radiatively

active side. These pieces of information can be supplied very easily via the already existing card in the NISA

file of NISA/3D-FLUID. Each radiating face is taken as one radiation surface. View factors between the

radiating surfaces are automatically generated by NISA/3D-FLUID taking into account self-obstruction and

obstructions due to a third surface.

As can be assessed from the preceding discussion, computing view factors can result in usage of

excessive computer time. To economize this computation, different techniques are used depending on

whether the geometry being analyzed is 2D, 3D or axisymmetric. For example, double area integration

method (ref. 8) is employed in comparison with contour integration method (ref. 8) when a 3D geometry, with

radiation surfaces, is being analyzed. No special directives are required when computing view factors for

axisymmetric geometries. NISA/3D-FLUID internally generates a complete 3D model (with the axis of

symmetry as the X-axis [NISA/3D-FLUID]) to calculate the required view factors. Furthermore. for 2D

problems, a completely different approach, called Hottel's crossed-string method (ref. 8) is employed for its

computational efficiency and accuracy. Reference 8 provides more details for evaluating view factors for

interested readers.

FE FORMULATION & SOLUTION PROCEDURE

The partial differential equations (Equations 1 through 3) and the radiative balance equation (Equation

4) are to be solved simultaneously to account for the fluid flow and heat transfer analyses in a given domain

with specified boundary conditions. The convective terms appearing in Equations (2) and (3). simultaneous

177



solutionof Equations (3) and (4), and arbitrary, geometries encountered in most practical problems would

require numerical tools for obtaining solution to coupled Equations 1 through 4. The Galerkin method in

conjunction with the finite element method (ref. 8) form the basis of discretizing Equations 1 through 3. The

penalty approach (ref. 3) is employed to eliminate the pressure from Equation (2) making use of Equation (1).

For further details, refer to (refs. 3 and 10). The discretized form of Equations (2) and (3) can be written in

matrix form as follows

[KI {X} = {f} (6)

where Kij is the "stiffness" matrix, consisting of contributions from acceleration, diffusion and pressure

gradient terms of Equation (2) and acceleration and diffusion terms of Equation (3). Xj represent [U, V, W ]

for momentum equations and IT] in the case of energy equation. The vector fj is discussed more at length as

this contains coupling terms in Equations (2), (3), and (4). For example, the vector {f} for the momentum

equations is

- j'f2 NI pgi[3 (T-TI3) d_ + SFNI (-PSij + xij) njdF
(7)

Equation (7) indicates the influence of temperature distribution on the momentum equations while convective

terms (included in Kij for Equation (3)) represent a dependence of the temperature field on the velocity

distribution.

Furthermore l] for the energy equation consists of the following term:

fj = Sf2NI Qdf_ + SrNI q dF

(8)

where

q = qa + qc + qr

In the above equality, qa, qc, and qr refer to the applied heat flux, effect due to convection boundary

conditions, and that due to radiation on the boundary, respectively. The gray-body radiative effects can be

considered via qr which is evaluated using Equation (4) for a "known" temperature distribution. It is thus

evident that Equations (3) and (4) are coupled via qr and T. Far a complete enclosure. Equation (4) can be

represented in the matrix as

[R] {qr} = [S] {T}

(9)

(10)
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where

RU

N

: /
j=l 8i _J

(11)

and

Sij

N

j=!

(12)

Ideally Equations (6) for momentum and energy equations together with the radiative balance Equation (10)

must be solved simultaneously. For practical reasons (computer memory and time, and nonlinearity in

Equations (6) and (10)), a sequential approach is undertaken to solve these algebraic equations. Depending on

the nature of coupling (strong for flows with free convective effects and weak for flows with forced

convective effects), momentum, energy, and radiative balance equations are solved. For more details, refer to

(ref. 10). It has been observed that qr (and hence T) solution max' not converge or may do so slowly. An

under relaxation of qr leads to its stabilization. This is achieved as follows:

q_+ I = _ q_+ 1 + ( I -_) q_. (13)

where ct is a user-defined relaxation factor. During a calculation sequence convergence checks are performed

for velocity, temperature and surface flux, qr, distributions by evaluating the L2 norms. The sequential

calculations are performed until the L2 norms of all the nodal variables and surface radiation fluxes fall below

a user-defined tolerance.

Special Cases:

There are a few special cases which require a slight modification to the above methodology for

including the gray surface radiative effects in the heat transfer analysis. These are as follows:

a) Domain with plane(s) of symmetry

b) Exchange of radiative flux through "windows" in the domain

c) Exchange of radiative flux between the domain and surroundings

d) Radiative surfaces with no thickness.

The details of these modifications are presented in (ref. 10).
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ILLUSTRATIONS

Theaimof the present paper is to discuss an efficient solution strategy that must be undertaken to
t

solve coupled fluid flow and heat transfer problems in the presence of radiative energy exchange between

gray surfaces in a domain of interest with specified boundary conditions. In the previous sections, the

pertinent differential equations and their respective discretized forms (using the finite element method) are

discussed. In this section, a discussion of the results obtained with the outlined procedure for a couple of

problems is undertaken.

Example 1: Natural Convection with and without Surface Radiative Effects in a Cavity.

The validation of the developed procedure is established by solving a problem studied by Behnia et al.

(ref. 11). The fluid flow due to natural convective effects in a square cavity with radiating surfaces is

considered. Figure 2 shows this cavity of a characteristic dimension, L and the specified boundary conditions.

The top and bottom walls are adiabatic. The left wall is maintained at a uniform hot temperature, Th. The

right wall has convective and/or radiative boundary condition. The convective heat transfer coefficient is h.

The temperature of the surroundings and the ambient temperature are taken to be T_c. All the internal surfaces

of the cavity have an emissivity of 0.9 and the fluid in the cavity is air. The cavity size, L, can be chosen to

get a Rayleigh number of 3xl05. Table I shows a summary of conditions under which each case is analyzed

with an aim of obtaining steady state temperature and fluid flow distributions in the cavity. Due to the

presence of natural convective effects, strong coupling between the fluid flow and temperature fields is

expected. The cavity is discretized into a graded mesh of 44 x 36 linear quadrilateral elements. The steady

state algorithm of the code is invoked. Table 2 shows the relaxation parameters employed for each of the run

detailed in Table 1 and the corresponding numbers of iterations required to obtain converged solutions.

Figure 3 shows the isotherms obtained for the cases denoted as R300, EC300, and REC300. A

comparison of isotherms for these cases clearly indicates the effect of surface radiation on the adiabatic walls

(top and bottom), the isotherms are no longer normal to these walls. Figure 4 shows the streamlines for the

cases R300, EC300, and REC300 respectively. Table 3 shows a comparison of the maximum value of stream

functions obtained for these runs with those listed in Behnia et al (ref. 11). A good quantitative agreement

between the results is evident. Figure 5 shows the horizontal velocity along the vertical center line for these

cases. The velocity profiles shown in the figure compare well with those in Figure 7 ofref. 1 I.

Example 2: Analysis of a Planar Thermosyphon.

In this example, the fluid flow and temperature distributions are studied in a thermosyphon including

the surface radiative effects. A thermosyphon is a device used for cooling of electronic components, heat

removal systems for nuclear reactors, and having applications in solar systems (ref. 9). Since thermosyphons

involve no blowing or pumping of fluids, they are less expensive and more durable (termed as passive

systems) as these do not require external signals for operatio n. A schematic of planar thermosyphon and the

assigned boundary conditions is shown in Figure 6. An analysis of fluid flow and heat transfer in a

thermosyphon is presented in (ref. 9) without the surface radiation effects. These effects have been included
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in thestudyhere.All thewallsareblackandareconsideredto beradiating.By observingtheradiation
surfacesinFigure6, it isevidentthatall thesurfacescannot"see"eachother.In otherwords, theview
factorcomputation,in thepresenceof thirdsurfaceobstructions,is invoked.Thesecomputationsaremore
complexandhandledefficientlyinNISA/3D-FLUID(ref. 10).

First,theresultsarepresentedforthecaseinwhichonlytheconvectiveeffects(dueto natural
convection)areconsidered.Thesameanalysisisperformedin (ref.9),inwhichtheeffectsof varyingthe
Rayleighno.andaratioof thermalconductivitiesof solidto fluid areconsidered.Thereforefor thesakeof
comparison,resultsarepresentedforaRayleighno.of 104andaratioof thermalconductivitiesof 1(see(ref.
9) for moredetails).Figure7showsthestreamfunctiondistributionfor thiscaseandthecorresponding
isothermsareshowninFigure8. A goodagreementbetweentheseresultsandthosepresentedin (ref.9) is
observed.

Now,thesurfaceradiationeffectsduetothesurfacesshowninFigure6 isconsidered.Theresults
for thiscasearenotpresentedin(ref.9). Figures9 andI0 showdistributionsof streamfunctionsand
isotherms.A comparisonof isothermsshowninFigures8and10indicateaconsiderabledifferencein their
distributions.A furthercomparisonof thevelocitydistributions,FigureI1,at "inlet"and"outlet"of the
thermosyphonshowmarkeddifferences.Thedifferencein thesevelocitydistributionsamountsto a
differenceof 25%in flow rate.Thisanalysisclearlyindicatesthatif thesurfaceradiationheattransferisnot
accountedfor, inaccuratedistributionsof temperaturesandvelocitiesmayresult.

CONCLUSIONS

A numericalschemebasedonthe finite element method is presented for solving coupled fluid flow

and heat transfer problems in the presence of surface radiation. A sequential solution of momentum, energy

and, radiative energy equations is considered for efficient computer memory management and disk usage.

The computed results validated the numerical procedure adopted for an analysis of coupled fluid flow and

heat transfer phenomena. The results presented compared well with those reported in literature. It is shown

via the results discussed in this paper that the surface radiative effects must be considered for a complete heat

transfer analysis. More research is underway to extend this work to consider non-gray surfaces and eventually

participating fluids.
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NOMENCLATURE

C = Specific Heat q =

g = Gravity Force r =

k = Thermal Conductivity F --

p = Pressure t =

Heat Flux

Spatial Coordinate

View Factor

Time
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Q
R

S

T

U

F

X

N

qJ

J
a

c

Volumetric Source

Radiation Matrix, LHS

Radiation Matrix, RHS

Temperature

Velocity

Forcing Function

Generalized Vector Nodal Unknown

Shape Functions

Stream Function

ct, ?, tp = Relaxation Parameters

p = Density

13 = Coefficient of Volume Expansion

c -- Surface Emissivity

5 -- Kronecker Delta

o = Stefan-Boltzmamn Constant

f2 = Domain

F = Boundary of the Domain

x = Fluid Stress

Subscripts

= Reference Temperature r = Radiative

= Spatial Index, Surface No. i = Spatial Index, Surface No.

= Applied Externally s -- Surroundings

= Convective

Superscripts

= Nodal Index i = Iteration No.
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Table 1 Summary of Three Different Runs

Run Ra B.C. on the right wall Surface Radiation

REC300 300,000 Convective + radiative included

EC300 300,000 Convective not included

R300 300,000 Radiative included

Ra = Gr Pr = p' g 13(Th-T®) L 3 . C p_.E

laz k

Table 2 Relaxation Parameters and Number of Iterations

Run

REC300

EC300

R300

Relaxation Parameter

Velocity

ct

0.04

0.04

0.04

Temperature

1.0

1.0

1.0

Radiative heat

flux

O

0.1

0.1

0.1

No. of iterations

64

40

68

Table 3 Values of IW'lmax for Different Runs

Run

REC300

EC300

R300

IW'lra_t-I_t'l"x, a = k
pCp

Behnia et al. NISA/3D-FLUID

(ref. !1) (ref. 10)

13.04

I 0.93

I 1.93

12.94

II.01

I ! .79
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